356 research outputs found

    How large should whales be?

    Full text link
    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table

    Isokinetic muscle function comparison of lower limbs among elderly fallers and non-fallers

    Get PDF
    O objetivo deste estudo foi identificar se hĂĄ diferenças entre o desempenho muscular de tornozelo, joelho e quadril em idosos com e sem relato de queda nos Ășltimos seis meses. Foram incluĂ­dos 81 idosos com 65 anos ou mais: 56 negaram quedas (G1) e 25 relataram quedas (G2). Utilizou-se o questionĂĄrio perfil de atividade humana para medir o nĂ­vel de atividade fĂ­sica, e o dinamĂŽmetro isocinĂ©tico para mensurar os parĂąmetros fĂ­sicos da função muscular. Os grupos nĂŁo diferiram entre si em relação Ă  idade (p=0,925), duração (p=0,065) e frequĂȘncia (p=0,302) da prĂĄtica do exercĂ­cio fĂ­sico, Ă­ndice de massa corpĂłrea (p=0,995) e nĂ­vel de atividade fĂ­sica (p=0,561). O G2 apresentou menor desempenho para as variĂĄveis pico de torque de flexĂŁo e extensĂŁo de joelho esquerdo (p=0,027 e p=0,030, respectivamente) e trabalho por peso corporal (p=0,040) de flexĂŁo de joelho esquerdo a 60°/s; pico de torque e trabalho por peso corporal de flexĂŁo e extensĂŁo de joelho a 180°/s bilateralmente (p<0,050); e potĂȘncia mĂ©dia de flexĂŁo de joelhos direito e esquerdo (p=0,030). A maioria das variĂĄveis do tornozelo e quadril nĂŁo apresentou diferenças entre os grupos. Apenas a variĂĄvel pico de torque de extensĂŁo de quadril esquerdo foi significativamente maior no G1 (p=0,035). É importante considerar a função muscular do joelho na avaliação clĂ­nica de idosos para direcionar a intervenção terapĂȘutica e a prevenção de quedas.The aim of this study was to identify whether there are differences between the performance of muscular groups of ankle, knee and hip among elderly people who didn't have falls and individuals who reported falls in the last six months. The study included 81 elderly aged 65 or older: 56 non-faller subjects (G1) and 25 faaller subjects (G2). To obtain the level of physical activity, the questionnaire Human Activity Profile was used, and the muscle function of the lower limbs was assessed using isokinetic dynamometer. The groups did not differ regarding age (p=0.925), duration (p=0.065) and frequency (p=0.302) of the practice of physical exercise, body mass index (BMI) (p=0.995) and level of physical activity (p=0.561). The G2 showed a lower performance of peak torque of left knee flexion and extension (p=0.027 and p=0.030, respectively) and work proportional to body weight (p=0.040) of left knee flexion at 60°/s; peak torque and work proportional to body weight of bilaterally knee flexion and extension at 180°/s (p<0.05) and average power of right and left knee extension (p=0.03). Most variables of ankle and hip joints did not differ between groups. Only peak torque of left hip extension was significantly higher in the non-faller group (p=0.035). It is important to consider knee muscle function in the clinical evaluation of elderly in order to make the intervention more assertive and thus to prevent falls

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    Changes in stable isotope compositions during fasting in phocid seals

    Get PDF
    This study was supported by NSF grant #0213095 and by FRFC grant #2.4502.07 (F.R.S.-FNRS).Rationale:  The grey seal, Halichoerus grypus (GS), and the northern elephant seal, Mirounga angustirostris (NES), come ashore for reproduction. This period involves intense physiological processes such as lactation in females and a developmental post‐weaning fast in juveniles. Previous studies have shown that ÎŽ13C and ÎŽ15N values are affected by starvation, but the precise effects of fasting associated to lactation and post‐weaning fast in seals remain poorly understood. Methods:  To examine the effect of lactation and post‐weaning fast on stable isotope ratios in GS and NES, blood and hair were sampled from twenty‐one GS mother‐pup pairs on the Isle of May and on twenty‐two weaned NES pups at Año Nuevo State Reserve during their respective breeding seasons. Milk samples were also collected from GS mothers. Stable isotope measurements were performed with an isotope ratio mass spectrometer coupled to an N‐C elemental analyser. Results:  Changes in stable isotope ratios in blood components during fasting were similar and weak between GS and NES mothers especially in blood cells (GS: Δ15N = 0.05‰, Δ13C = 0.02‰; NES: Δ15N = 0.1‰, Δ13C = 0.1‰). GS showed a 15N discrimination factor between maternal and pup blood cells and milk, but not for 13C. The strongest relationship between the isotopic compositions of the mother and the pup was observed in the blood cells. Conclusion:  Isotopic consequences of lactation, fasting, and growth seem limited in NES and GS, especially in medium‐term integrator tissues of feeding activity such as blood cells. Stable isotope ratios in the blood of pups and mothers are correlated. We observed a subtle mother‐to‐pup fractionation factor. Our results suggest that pup blood cells are mostly relevant for exploring the ecology of female seals.PostprintPeer reviewe

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    Parallel Evolution of Auditory Genes for Echolocation in Bats and Toothed Whales

    Get PDF
    The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators—two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function

    Sex bias in biopsy samples collected from free-ranging dolphins

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in European Journal of Wildlife Research 56 (2010): 151-158, doi:10.1007/s10344-009-0299-7.Biological samples of free-ranging dolphins are increasingly used to gain information on population structure and ecology. In small cetaceans, the gender of individuals usually cannot be determined at sea, and population sex ratio has to be inferred indirectly. We used molecular sexing to determine the gender of 340 biopsy samples of bottlenose dolphins, Tursiops truncatus, spotted dolphins, Stenella frontalis, and common dolphins, Delphinus delphis, collected around the Azores and Madeira. Sex ratio was globally skewed in favor of males, and differed between species and archipelagos. Skew was probably influenced by the selectivity of biopsy collectors and seasonal or year-round predominance of males in natural populations. Skew was also influenced by sampling duration and intensity. In the Azores, when several samples were successively collected within the same group, the proportion of female samples decreased as a function of sample order. This trend indicated a tendency for females to increasingly avoid the boat while samples were being collected. It showed that males and females reacted differently to the perturbation caused by the biopsy sampling process (i.e. sample collection and driving style).Portuguese Foundation for Science and Technology (FCT) and the FEDER program for funding the CETAMARH (POCTI/BSE/38991/01) and the GOLFINICHO (POCI/BIA-BDE/61009/2004) projects, S.Q.'s post-doctoral grants (IMAR/FCT- PDOC-006/2001-MoleGen and SFRH/BPD/19680/2004), M.A.S.'s doctoral (SFRH/BD/8609/2002) and post-doctoral (SFRH/BPD/29841/2006) grants, S.M.'s investigation assistant grant (CETAMARHII/POCTI/BSE/38991/2001) and I.C.'s investigation assistant grants (IMAR/FCT/GOLFINICHO/001/2005 and IMAR/FCT/GOLFINICHO/004/2006). FCT for its pluri-annual funding to Research Unit #531 and the EU funded program Interreg IIIb for funding the MACETUS project (MAC/4.2/M10) as well as R.P. and S.M.’s grants (IMAR/INTERREGIIIb/MACETUS/MAC1/2)

    A New Dolphin Species, the Burrunan Dolphin Tursiops australis sp. nov., Endemic to Southern Australian Coastal Waters

    Get PDF
    Small coastal dolphins endemic to south-eastern Australia have variously been assigned to described species Tursiops truncatus, T. aduncus or T. maugeanus; however the specific affinities of these animals is controversial and have recently been questioned. Historically ‘the southern Australian Tursiops’ was identified as unique and was formally named Tursiops maugeanus but was later synonymised with T. truncatus. Morphologically, these coastal dolphins share some characters with both aforementioned recognised Tursiops species, but they also possess unique characters not found in either. Recent mtDNA and microsatellite genetic evidence indicates deep evolutionary divergence between this dolphin and the two currently recognised Tursiops species. However, in accordance with the recommendations of the Workshop on Cetacean Systematics, and the Unified Species Concept the use of molecular evidence alone is inadequate for describing new species. Here we describe the macro-morphological, colouration and cranial characters of these animals, assess the available and new genetic data, and conclude that multiple lines of evidence clearly indicate a new species of dolphin. We demonstrate that the syntype material of T. maugeanus comprises two different species, one of which is the historical ‘southern form of Tursiops’ most similar to T. truncatus, and the other is representative of the new species and requires formal classification. These dolphins are here described as Tursiops australis sp. nov., with the common name of ‘Burrunan Dolphin’ following Australian aboriginal narrative. The recognition of T. australis sp. nov. is particularly significant given the endemism of this new species to a small geographic region of southern and south-eastern Australia, where only two small resident populations in close proximity to a major urban and agricultural centre are known, giving them a high conservation value and making them susceptible to numerous anthropogenic threats
    • 

    corecore